skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Zichen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper demonstrates a simultaneous Thomson scattering and rotational Raman scattering spectroscopy in a weakly ionized plasma in air. Thomson scattering was collected in the forward scattering direction, in order to compress the relative spectra width of Thomson scattering from the plasma. Simultaneous measurements of rotational Raman scattering were obtained in the same direction, which was not affected by the collection angles. The measurements thus yielded electron temperature (Te) and electron number density (ne) as well as gas temperature in a weakly ionized atmospheric pressure plasma. The separation of rotational Raman scattering and Thomson scattering occurred when the scattering angle decreased to 20 degrees in the plasma, where the air temperature was found to be 150 ± 25 °C, and electron temperature of the plasma was 0.587 ± 0.087 eV, and electron number density was (1.608 ± 0.416) × 1021 m-3. The technique could be used for various plasma and combustion diagnostics in realistic engineering environments. 
    more » « less
  2. The frame rate of conventional high-speed imaging devices is limited by exposure time and signal read-out time. Structured imaging is able to push the frame rate beyond the limit of the imaging device. This work demonstrates the feasibility of potential TeraHz rate structured imaging with a multiplexed structured imaging setup. In this work, a multiplexed structured image capture system was employed to image UV laser induced krypton-II emission lines at 10 GHz. The measured emission intensity of the 764 nm line over time suggests a temporal resolution of 97 ps. The temporal resolution is adjustable, and the frame rate can be further increased to the TeraHz level. 
    more » « less